|
|
||||||||
1 Institute for Behavioral Genetics, University of Colorado, Boulder.
2 Department of Experimental Pathology, and Center for Applied Biomedical Research, University of Bologna, Italy.
Address correspondence to Thomas E. Johnson, PhD, Institute for Behavioral Genetics, Box 447, University of Colorado, Boulder, CO 80309. E-mail: johnsont{at}colorado.edu
Inhibition of either the insulin-like or target of rapamycin (TOR) pathways in the nematode Caenorhabditis elegans extends life span. Here, we demonstrate that starvation and inhibition of the C. elegans insulin receptor homolog (daf-2) elicits a daf-16-dependent up-regulation of a mitochondrial superoxide dismutase (sod-3). We also find that although heat and oxidative stress result in nuclear localization of the DAF-16 protein, these stressors do not activate a SOD-3 reporter, suggesting that nuclear localization alone may not be sufficient for transcriptional activation of DAF-16. We show that inhibition of either TOR activity or key components of the cognate translational machinery (eIF-4G and EIF-2B homologs) increases life span by both daf-16-dependent and -independent mechanisms. Finally, we demonstrate that at least one nematode hexokinase is localized to the mitochondria. We propose that the increased life spans conferred by alterations in both the TOR and insulin-like pathways function by inappropriately activating food-deprivation pathways.
HOME | HELP | FEEDBACK | SUBSCRIPTIONS | ARCHIVE | SEARCH | TABLE OF CONTENTS |
---|
All GSA journals | The Gerontologist |
Journals of Gerontology Series B: Psychological Sciences and Social Sciences |