|
|
||||||||
Departments of 1 Experimental Pathology and Oncology
2 Preclinical and Clinical Pharmacology, University of Florence, Italy.
Address correspondence to Alessandra Mocali, Department of Experimental Pathology and Oncology, Viale G.B. Morgagni 50, 50134, Firenze, Italy. E-mail: amocali{at}unifi.it
The comet assay methodology was used to monitor nuclear changes occurring in MRC5 human fibroblasts during transition from young to senescent cultures and to study heterogeneity of senescent populations. Nuclear morphology and size, DNA content per nucleus, and DNA damage (basal strand break, total damage, and oxidized base levels) were evaluated; moreover, visually identified large and small nuclei were analyzed separately and arranged in classes of increasing DNA damage. Oxidized base levels were definitely lower in young versus senescent fibroblasts of which, however, a significant proportion showed negligible DNA damage. Nuclear size enlargement accompanying senescence was almost equally influenced by cell ploidy increase and also by a chromatin decondensation process involving diploid cells. It is noteworthy that DNA damage in senescent fibroblasts correlated significantly to nuclear size, but not to DNA content. The comet assay allowed us to identify different senescent phenotypes and to investigate changes in nuclear features and/or DNA damage irrespective of time elapsed in culture.
HOME | HELP | FEEDBACK | SUBSCRIPTIONS | ARCHIVE | SEARCH | TABLE OF CONTENTS |
---|
All GSA journals | The Gerontologist |
Journals of Gerontology Series B: Psychological Sciences and Social Sciences |