Journals of Gerontology Series A: Biological Sciences and Medical Sciences Large Type Edition
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
 QUICK SEARCH:   [advanced]
Author:
Keyword(s):
Year:  Vol:  Page: 


This Article
Full Text
Full Text (PDF)
Alert me when this article is cited
Alert me if a correction is posted
Services
Similar articles in this journal
Similar articles in PubMed
Alert me to new issues of the journal
Download to citation manager
Google Scholar
Articles by Herrera, M.
Articles by Jagadeeswaran, P.
Articles citing this Article
PubMed
PubMed Citation
Articles by Herrera, M.
Articles by Jagadeeswaran, P.
The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 59:B101-B107 (2004)
© 2004 The Gerontological Society of America

Annual Fish as a Genetic Model for Aging

Michael Herrera and Pudur Jagadeeswaran

Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio.

Advancement in the genetics of aging and identification of longevity genes has been largely due to the model organisms such as Caenorhabditis elegans and Drosophila melanogaster. However, knowledge gained from these invertebrates will not be able to identify vertebrate-specific longevity genes. The mouse has a relatively long life span of about 3 years, which limits its utility for screening of longevity genes. Fish have been used in aging studies. However, systematic comparison of survivorship curves for fish is lacking. In this study, we compared the survivorship curves of zebrafish and 2 different annual fish, namely, Cynolebias nigripinnis and Nothobranchius rachovii. These studies established that Nothobranchius rachovii has the shortest life span (8.5 months, at which time 10% of population remains). We also established that it is possible to breed Nothobranchius rachovii under laboratory conditions, and showed that their embryos can be stored for several months and hatched at any time by adding water. In addition, we have isolated 31 cDNA markers out of 71 attempted amplifications based on corresponding homologous genomic sequences in zebrafish and Fugu available from public databases, suggesting that approximately 40% of the genes from Nothobranchius rachovii could be easily isolated. Thus, the ability to be bred under laboratory conditions and the availability of cDNA markers for mapping, along with the major advantage of a relatively short life span, make Nothobranchius rachovii an attractive vertebrate genetic model for aging over other available vertebrate models.







HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
All GSA journals The Gerontologist
Journals of Gerontology Series B: Psychological Sciences and Social Sciences
Copyright © 2004 by The Gerontological Society of America.